Architect's memo 89: November 2007
Your scribe has been asked to address a subject which, on the surface (first unintended pun) should be relatively straightforward - when does a paint achieve full cure? After giving some thought to the subject, I almost gave it away as being too difficult a topic to answer succinctly in this form of communication. I have a feeling that this still would have been the wisest course!
I decided to define the term ' full cure' as the time needed for the applied paint film to reach a plateau of performance properties (the alliteration was also unintended but I' ll live with it!).
Paints divide into two main categories - those that film form by simple loss of solvent and those that need a chemical reaction to form a film.
The former category contains materials such as acrylic and nitrocellulose lacquers, vinyl coatings and chlorinated rubbers. These films quickly achieve ' full cure' as the solvent evaporates, which generally occurs in less than 24 hours. In fact small percentages of solvents can remain in such films for several weeks but generally without impairment to film properties.
Waterborne, architectural paints also fall into this category because, after all, they only need to lose water to form a film. These materials are, however, much more complex. For example, they are critically dependent on temperature. If one tries to cast a film below the minimum film forming temperature of the particular paint, a film will not even be achieved, let alone ' full cure'. If paints are formulated with ' coalescing agents' to assist film formation these slowly evaporating plasticising solvents will take at least a week to leave the film and return it to the optimum hardness.
Softer polymers can be used that don' t need the assistance of such solvents and these films achieve their ' full cure' in much shorter times. Although they may achieve their optimum properties more quickly, their final film properties may be significantly poorer than the slower achieving, solvent containing counterparts.
Soft or hard, all of these architectural paints contain water-soluble thickeners and surfactants which can impact on final film properties. Take the example of an interior/exterior paint which is applied to a lounge wall, bathroom wall and an exterior wall exposed to the weather.
In the case of the lounge maximum performance will occur within a few hours for a solvent-free paint and a few days for a solvent containing one. The water soluble material will remain in the film and become part of, and impact upon, the binder.
For the exterior situation a performance peak will occur on the same time scale as above but the first rains that the paint is exposed to will wash out the water soluble components and take the film performance up to another level. ' Full cure' can not be said to occur until the product has been substantially rainwashed.
In a very well ventilated bathroom the same timetable exists as for the lounge; condensation however, can be a wild card. Condensed water can continually soften a film and bring surfactants to the surface. A regime of wiping off condensation from the surface of a newly painted bathroom for the first few days of use will result in a permanent increase of the performance plateau.
Paints that cure by chemical reaction (alkyds, polyurethanes and epoxies) are governed by a different set of parameters including the type of chemistry in question and the number of reaction sites. The basic picture is that these paints are made up of relatively small molecular chains with selective ' hooks' on these chains. These ' hooks' react with other chemical molecules, provided by the hardener or oxygen from the air. Some ' hooks' are much more reactive than others, and of course, the more ' hooks' there are on a single chain the more likely is the chance of reaction. These reactions are also referred to as cross-linking.
All of these products suffer from a common plight in that, as reaction occurs, the chains get bigger and bigger and more and more sluggish. Reaction eventually slows right down, well before all of the hooks are used up. Heat is the great benefactor here, making the chain much more mobile and increasing the rate of reaction. For every increase of 10°C the reaction rate is approximately doubled.
The concept of 'full cure' for such systems is therefore a theoretical concept. In practice, times to achieve desirable plateaus such as block resistance, abrasion resistance, solvent resistance, overcoating windows etc are measured by testing at ranging temperatures. These are then offered as guides in Data Sheets.
A further complication are the waterborne enamels that initially obey the rules of the first product category but also contain reaction sites that start cross-linking once the water has left the film. These chemistries are designed to take these products to another, higher level of performance. Different resin manufacturers practice different technologies which can take from a week to a month to fully ' kick in' at ' typical' ambient temperatures, again with elevated temperatures having a major impact.
The cure of each product on each project varies depending on application, temperature, paint system and the list goes on. Because these variables are often uncontrollable, we have a ' rule of thumb' recommendation that the painted surface be allowed to cure for four weeks before cleaning. That way no matter what, how or when it was been painted, it will have had ample time to reach its optimum finish before doing battle with dusting cloths, paintwork cleaner and overzealous cleaners.
Architects memos
The Resene architect's memo section provides technical information on a variety of topics relating to paints, finishes and coatings.